

Heat resistant imide base material masking · tape for fixing semiconductor chip

# 170 series

## Feature

- 1 Solder heat resistant heat resistant tape based on polyimide film
- (2) Excellent adhesive residue to glass and semiconductor. (171)

③ Light peelability (171), strong adhesion (172, 174) grade available

| Use | 171 | Glass for C-MOS camera module, Masking tape for C-MOS   |
|-----|-----|---------------------------------------------------------|
|     | 175 | Glass for C-MOS camera module, Masking tape for C-MOS   |
|     | 172 | Lead frame (provisional) fixing tape (middle adhesive)  |
|     | 174 | Lood frame (new visional) fiving tone (strong adhesian) |

174 Lead frame (provisional) fixing tape (strong adhesion)



| Release-treated PET film   |  |  |
|----------------------------|--|--|
| Silicone adhesive layer    |  |  |
| Substrate (polyimide film) |  |  |

Characteristic General characteristics

| product name                | Thickness<br>(mm) | Base material<br>(mm) | Adhesive force<br>(N/25mm) |
|-----------------------------|-------------------|-----------------------|----------------------------|
| 171                         | 0.065             | 0.050                 | 0                          |
| 175                         | 0.04              | 0.025                 | 0                          |
| 172                         | 0.04              | 0.025                 | 3                          |
| 174                         | 0.065             | 0.050                 | 5                          |
| KX174<br>(Development item) | 0.05              | 0.025                 | 8                          |

 Measurement condition
 Tensile rate
 300mm/min

 (Conforming to JIS Z 0237 Tension angle
 180 degree: After bonding, the measure

nforming to JIS Z 0237 Tension angle 180 degree: After bonding, the measured value after 24 hours Measurement temperature 23°C Adherend Stainless steel plate

| product name    | Base material<br>(mm) | Tensile strength<br>(MPa) | Elongation<br>(%) | Dielectric breakdown voltage<br>(KV/mm) |
|-----------------|-----------------------|---------------------------|-------------------|-----------------------------------------|
| 171             | 0.050                 | 310                       | 80                | 18                                      |
| 175             | 0.025                 | 340                       | 60                | 9                                       |
| 172             | 0.025                 | 340                       | 60                | 9                                       |
| 174             | 0.050                 | 310                       | 80                | 18                                      |
| Test conditions |                       | C2318                     | C2318             | C2318                                   |



conditions After sticking to glass, leave at 250  $^{\circ}$  C for 1 minute After taking out, air cooling at room temperature for 30 minutes.  $\rightarrow$  Take the tape and observe the glass surface

## (1)Adhesive residue property-2



conditions

After sticking to the stainless steel surface, leave the above condition After taking out, air cooling at room temperature for 30 minutes.

 $\rightarrow$  Take the tape and observe the stainless steel surface

#### (2) Chemical resistance

Immerse in an acidic solution (pH 2) of H 2 SO 4 for 1 minute.

#### 【After Test】



[Before the test]



Good acid resistance.





(3) Peripheral circuit bonding



(4) Resin mold



(5) Tape peeling



(6) Disconnection / Packaging



## Selection of product number



ISO 1043 notation PI Polyimide PPS Polyphenylene sulfide PBT Polybutylene terephthalate POM Polyoxymethylene PP polypropylene PE polyethylene

# [Reference material 2] Thermal stability of polymer

Melting point (heat resistance) 
$$Tm = -\frac{\Delta Hm}{\Delta m}$$

∆*S*m

Enthalpy change of melting

Intermolecular interaction

Enthalpy change of melting

Molecular flexibility

The larger the intermolecular interaction, the larger  $\Delta\,{\rm Hm}.$  The smaller the bendability of the molecule, the smaller  $\Delta\,{\rm Sm}.$ 

Heat resistance (thermal



#### Precautions on use

• All technical data are prepared based on tests and measured values conducted at the laboratory of Joint Giken Kagaku Co., Ltd. However, product characteristics may vary greatly depending on environment and adherend.

Therefore, regarding these characteristic data, it is a reference value, not a guaranteed value.

Before using it please make sure that this product is suitable for the intended use and environment.

 $lacel{eq:constraint}$  The above measurement is performed at room temperature (23  $^\circ$   $\,$  C).

In case of low temperature (5  $^\circ\!\text{C}$  or less), adhesion may decrease sharply.

#### Caution on storage

- Please be sure to put it in a box and keep it.
- Please choose a cold and dark place not to be exposed to direct sunlight for the storage location.

In particular, please do not expose to high temperature and high humidity (temperature 30 °C or more and humidity 50% or more forbidden).

Published in December 2018

KGK CHEMICAL CORPORATION 〒359-0011 940 Minami-nagai Tokorozawa city Saitama pref. JAPAN phone +81-4-2944-5151